高三数学教学计划
时间过得可真快,从来都不等人,我们又将续写新的诗篇,展开新的旅程,写好计划才不会让我们努力的时候迷失方向哦。相信大家又在为写计划犯愁了吧?以下是小编精心整理的高三数学教学计划,欢迎大家借鉴与参考,希望对大家有所帮助。
高三数学教学计划1一、指导思想
依托20xx届取得的辉煌成绩,实现啸中学校发展蓝图,高三数学组必须团结一致,群策群力抓好高三数学复习,备战20xx高考,切实落实“关注差异,开发潜能,多元发展”的教学方针。
二、复习要求
1.资源共享提升效率
统一使用《优化方案》,合理运用书利华网站上的人教版高三复习课件,适当补充其它课件,实现资源共享,提高备课效率。
2.立足单元形成网络
作好单元复习,这是一个将数学知识由“点——线——网”的过程,将分散的知识串成面、串成体,形成知识体系的网络化,将问题归类,进行知识迁移和联想、分解与组合,一题多变、一题多解,举一反三,触类旁通。不仅重视单元内综合,更注重学科内的综合,关注在知识的交会点处设计问题。
3.注重方法培养能力
模拟题要定时定量训练,把训练当考试,积累经验、锤炼心理。选择题的训练立足基础,提高准确性,注重方法灵活性。填空题的训练注重训练学生准确、严谨、全面、灵活运用知识的能力和基本运算能力,注重书写结果的规范性。解答题重视审题过程,思维的发生、发展过程。在问题的分析、思路发展过程中运用数学思想方法进行思维的导向,在思维过程中点明数学思想方法在解题思路发现过程中所起的重点作用。
4.注重学生卷面表达的训练。
高考要获得好分数,除了具有较高的数学功底外,还要避免出现失误失分。一方面要通过试题训练使学生减少、避免马虎、失误丢分,还要强调学生的书面表达,训练学生答卷时做到字迹工整、格式规范、推证合理、详略适当,做到会的题目不丢分,不会做的题目也争取得部分步骤分。
5.做好试卷评析工作。
学生将常常面临模拟训练,教师的讲评试卷要分析题目考的哪些知识点、需要哪几种能力、体现哪些数学方法,使学生体会出题者意图。讲评中还要不断转换条件,进行变式训练,达到举一反三,触类旁通的训练,不能只满足于就题论题,要注重探求解题规律,提高点评的质量和效益。
三、强化训练
1.不依靠题海取胜,注重题目的质量和处理水平
当训练的题目达到一定的数量后,决定复习效果的关键性因素就不再是题目的数量,而在于题目的质量和处理水平。
①对立意新颖、结构精巧的新题予以足够的重视,要保证有相当数量的这类题目,但也不一味排斥一些典型的所谓“新题”、“热题”。传统的好题,包括课本上的一些例、习题应成为保留节目。陈题新解、熟题重温可使学生获得新的感受和乐趣。
②控制题目的难度,在“稳”、“实”上狠下功夫,那些只有运用“特技”才能解决的“偏、怪、奇”的题,坚决摒弃。
2.突破一个“老大难”问题。
“会而不对,对而不全”是一个老大难问题。“会而不对”是拿到一道题目不是束手无策,而是在正确的思路上,或考虑不周,或推理不严,或书写不准,最后答案是错的。“对而不全”是思想大体正确,最终结论也出来了,但丢三落四,或缺欠重大步骤,中间某一步逻辑点过不去;或遗漏某一极端情况,讨论不够完备;或是潜在假设;或是以偏概全等,这个老大难问题应该认真重视,并综合治理加以解决。
3.注重应试技巧的培养。
(1)速度。考试的时间紧,是争分夺秒,复习一定要有速度意识,加强速度训练,用时多即使对了也是“潜在丢分”,要避免“小题大做”。
(2)计算。数学高考历来重视运算能力,虽近年试题计算量略有降低,但并未削弱对计算能力的要求。运算要熟练、准确,运算要简捷、迅速,运算要与推理相结合,要合理。
(3)表达。在以中低档题为主体的高考中,获得正确的思路相对容易,如何准确而规范地表达就变得重要了,因此,复习中要有书写要求,模拟考试后要求交“满分卷”。
四、教学教研
1.定时定点参加组内教研活动,严格实行签到
2.加强组内学习、观摩、听课、实现资源共享
3.加强复习课、习题课、试卷分析课型的探讨,形成高效课模
4.探讨培优补差措施,重视拔尖生、踩线生工作
5.注重学生的心理辅导和心理调节。
五、复习进度
暑假:理科完成新课内容,集合与简易逻辑、函数、三角函数
第一周:平面向量
第二、三周:数列
第四周:数列
第五周:不等式
第六周:平面解析几何
第七周:平面解析几何
第八周:立体几何
第九周:立体几何
第十周:计数原理、概率
第十一周:随机变量及其分布
第十二、三周:机动安排、复习迎考
第十四、五周:机动安排、复习迎考
第十六、七周:机动安排、复习迎考
第十八、九周:机动安排、复习迎考
六、其它
1.单元、月考、期中、期末考试,由学校或备课组统一命制试题。
2.应掌握所教班级的高考目标,制定具体的培优补差措施。
3.按照文理、班级差异分版块定期交流教学、学生培养等信息。
4.对班级目标学生每周一次作业面批。
高三数学教学计划2一、 夯实基础。
今年高考数学试题的一个显著特点是注重基础。扎实的数学基础是成功解题的关键,从学生反馈来看,平时学习成绩不错但得分不高的主要原因不在于难题没做好,而在于基本概念不清,基本运算不准,基本方法不熟,解题过程不规范,结果“难题做不了,基础题又没做好”,因此在第一轮复习中,我们将格外突出基本概念、基础运算、基本方法,具体做法如下:1.注重课本的基础作用和考试说明的导向作用;2.加强主干知识的生成,重视知识的交汇点;3.培养逻辑思维能力、直觉思维、规范解题习惯;4.加强反思,完善复习方法。
二、解决好课内课外关系。
课内:(1)例题讲解前,留给学生思考时间;讲解中,让学生陈述不同解题思路,对于解题过程中的闪光之处或不足之处进行褒扬或纠正;讲解后,对解法进行总结。对题目尽量做到一题多解,一题多用。一题多解的题目让学生领会不同方法的优劣,一题多用的题目让学生领会知识间的联系。(2)学生作业和考试中出现的错误,不但指出错误之处,更要引导学生寻根问底,使学生找出错误的真正原因。(3)每节课留5-10分钟让学生疏理本节知识,理解本节内容。
课外:(1)除了正常每天布置适量作业外,另外布置一两 ……此处隐藏20830个字……由此强调:公差可以是正数、负数,也可以是0
2、第二个重点部分为等差数列的通项公式
(1)若一等差数列{an}的首项是,公差是d,则据其定义可得:
a2-a1=d 即:a2=a1+d
a3-a2=d 即:a3=a2+d
……
猜想:
a40= a1+39d
进而归纳出等差数列的通项公式: an=a1+(n-1)d
设计思路:在归纳等差数列通项公式中,我采用讨论式的教学方法。给出等差数列的首项,公差d,由学生研究分组讨论的通项公式。通过总结的通项公式由学生猜想的通项公式,进而归纳 的通项公式。整个过程由学生完成,通过互相讨论的方式既培养了学生的协作意识,又化解了教学难点。
(2)此时指出:这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法——迭加法:
a2-a1=d
a3=a2+d
……
an-an-1=d 将这n-1个等式左右两边分别相加,就可以得到 an–a1= (n-1) d即an=a1+(n-1) d ,当n=1时,此式也成立,所以对一切n∈N﹡,上面的公式都成立,因此它就是等差数列{an }的通项公式。
在迭加法的证明过程中,我采用启发式教学方法。利用等差数列概念启发学生写出n-1个等式。将n-1个等式相加,证出通项公式。在这里通过该知识点引入迭加法这一数学思想,逐步达到“注重方法,凸现思想” 的教学要求。
(三)巩固新知应用例解
例1 (1)求等差数列8,5,2,…的第20项;第30项;第40项
(2)-401是不是等差数列-5,-9,-13,…的项?如果是,是第几项?
例2 在等差数列{an}中,已知a5=10, a20=31,求首项与公差d。
这一环节是使学生通过例题和练习,增强对通项公式含义的理解以及对通项公式的运用,提高解决实际问题的能力。通过例1和例2向学生表明:要用运动变化的观点看等差数列通项公式中的a1、d、n、an这4个量之间的关系。当其中的三个量已知时,可根据该公式求出第四个量。
例3 梯子的最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列。计算中间各级的宽度。
设置此题的目的:1.加强同学们对应用题的综合分析能力,2.通过数学实际问题引出等差数列问题,激发了学生的兴趣;3.再者通过数学实例展示了“从实际问题出发经抽象概括建立数学模型,最后还原说明实际问题的“数学建模”的数学思想方法。
(四)反馈练习
1、课后的练习中的第1题和第2题(要求学生在规定时间内完成)。
目的:使学生熟悉通项公式,对学生进行基本技能训练。
2、课后习题第3题和第4题。
目的:对学生加强建模思想训练。
(五)归纳小结、深化目标
1.等差数列的概念及数学表达式an-an-1=d (n≥1)。
强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数。
2.等差数列的通项公式会知三求一。
3.用“数学建模”思想方法解决实际问题。
(六)布置作业
必做题:课本习题第2,6 题
选做题:已知等差数列{an}的首项= -24,从第10项开始为正数,求公差d的取值范围。(目的:通过分层作业,提高同学们的求知欲和满足不同层次的学生需求)
高三数学教学计划151.教学任务分析
1.1 学情分析
本节课的授课对象是我校学生,数学水平参差不齐,依赖性强,接受能力一般,灵活性不够。因此本节课采用低起点,由浅到深,由易到难逐步推进,热情地启发学生的思维,让学生在欢愉的气氛中获取知识和运用知识的能力。
1.2 教材分析
1.2.1 教材地位和作用
所用的教材是人教版《必修5》,教材通过日常生活中的实例,讲解等比数列的概念,特别地要体现它是一种特殊函数,通过列表,图像,通项公式来表达等比数列,把数列融于函数之中,体现了数列的本质和内涵。等比数列的定义与通项不仅是本章的重点和难点,也是高中阶段培养学生逻辑推理的重要载体之一,为培养学生思维的灵活性和创造性打下坚实的基础。
同时本节课是在学生已经系统地学习了一种常用数列,即等差数列的概念、通项公式和前n项和公式的基础上,开始学习另一种常用数列,即等比数列的相应知识,我认为本节教材对于进—步渗透数学思想,发展逻辑思维能力,提高学生的品质素养均有较好作用。众所周知,数列是中学数学的重点内容之一,也是高考的考查重点之一,其中等差数列和等比数列尤为重要,有关数列的问题,大多数都是归结为这两种基本数列加以解决的:而且这两途中数列在实际问题中有着广泛的应用,这说要求教学中高度重视,并有新的突破,拓展和引深。
1.2.2 教学任务和目标
教学任务分析:通过观察、归纳、猜想、类比等思维品质,正确理解等比数列的定义、等比数列通项公式。以及具体的知识运用及实际应用。
本堂课内容的编者按:首先注意前后知识的区别与联系,加强对比和类比,展示等比数列概念的形成和和指数函数的对应等深化过程,使得后进生部有发言权,优生也不乏味,从而达到面向全体的目的,激发学生学习数学兴趣。其次体会研究等比数列通项公式简单归纳方法:特殊→一般,重温数学家发现数学概念和数学公式的思维活动过程,沿着数学家寻求真理的足迹,再现与前人类似的创造过程。
教学目标:
知识目标:理解并掌握等比数列的定义和通项公式,并加以初步应用。
能力目标:通过慨念、公式和例题的教学,渗透类比思想、方程思想、函数思想以及从特殊到—般等数学思想,着重培养学生观察、比较、概括、归纳、演绎等方面的思维能力,并进—步培养运算能力,分析问题和解决问题的能力,增强应用意识。
品质素养目标:在传授知识培养能力的同时,培养学生勇于探求,敢于创新的精神,同时帮助学生树立克服困难的信心,培养学生良好的学习习惯意志品质。
1.2.3教学重点和难点
教学重点:等比数列、等比中项的概念的形成与深化;等比数列通项公式的推导及应用。
教学难点是:等比数列概念深化:体现它是一种特殊函数,等比数列的判定、证明及初步应用。
2.教材教法和学法分析
教材的处理
鉴于学生已基本上掌握数列概念,等差数列概念及通项公式(有利因素),但于由学生对教师,书本对于依赖,独立探索的信心和能力尚显不足(不利因素),故应稀释、放大、拉长等比数列概念的形成,展示深代过程和通项公式的推导过程,体现过程教学法。讲完课本例1、例2,例3,把等比中项的概念安排到第二课时教学。本节着重体现等比数列概念形成的过程及通项公式的推导与运用。