倍数的特征教学反思

时间:2023-01-19 12:28:19
倍数的特征教学反思

倍数的特征教学反思

作为一名人民老师,我们的工作之一就是课堂教学,借助教学反思可以快速提升我们的教学能力,我们该怎么去写教学反思呢?下面是小编为大家收集的倍数的特征教学反思,欢迎大家借鉴与参考,希望对大家有所帮助。

倍数的特征教学反思1

《3的倍数的特征》是学生在学习过2和5倍数特征之后的又一内容,因为2和5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。我决定在这节课中突出学生的自主探索,使学生猜想——观察——再观察——动手试验的过程中,概括归纳出3的倍数特征。

但上课的过程中,学生并没有按照我想的思路去进行,一个学生在我没有预想的前提下说出了3的倍数的特征,所以我准备让四人小组去合作交流发现3的倍数的特征也没有进行。只是让学生两人去再说一说刚才那个学生的发现,加以理解,巩固。

这节课结束后,我感觉以下方面做得不好。

1、备课不充分。自己在备课时没有好好的去备学生,没有做好多方面的预设;

2、在观察百数表到后面总结3的倍数特征时,都应放手让孩子们多说,说透,这样更有助于锻炼孩子的概括归纳能力。老师不要着急,学生能说出的尽量让学生说,多放手,相信学生。

倍数的特征教学反思2

2、5的倍数特征有共同之处,既都要关注个位上的数字。我在教学2的倍数特征时下功夫较多,由找倍数——观察特征——验证发现——得出结论,每一环节都使学生明确活动目的,找到学习方法。再到5的倍数特征时,何不由扶到放,充分发挥学生的自主能力性呢?因此,我完全放手,给学生以充分的时间和空间,让他们在观察、探索中体验成功的喜悦。

在教学既是2又是5的倍数的特征时,我没有让学生通过做课本上的习题总结结论,而是通过让学生说自己的学号,谁是2的倍数,谁是5的倍数,然后自然的追问一句:“为什么有的同学举了两次手?”全体学生幡然醒悟,原来这几个同学的学号既是2,又是5的倍数,很自然的找到了既是2又是5的倍数的特征,我感觉这一个环节的设计非常自然,贴近学生实际。这是我认为比较成功的地方。

不足之处:

1、.营造民主、宽松的学习氛围不够。

课堂气氛在很大程度上影响着学生学习过程中创造性的发挥。这节课一开始教师营造气氛不很到位。后来气氛有所缓和。

2、.总怕学生在这节课里不能很好的接受知识,所以在个别应放手的地方却还在牵着学生走。总结性的语言也显得有些罗嗦。

3.本节课在教学评价方式上略显单一。对学生的评价少,激励性的语言不够。

倍数的特征教学反思3

这节课新授知识较为简单,很适合让学生预习。所以课前我印制了百数表让学生圈出5的倍数和2的倍数,并设计了两个问题:1、观察5的倍数,想想这些数有什么特征?2、观察2的倍数,又有什么特征呢?一上课就小组交流这两个问题,同学们兴致高涨,足以看出预习效果是很好的。通过这样的教学,节省了很多时间,课堂作业可以当堂完成。从作业情况来看,大部分同学做得还不错。一小部分同学运用知识的能力欠佳,比如:写出5个奇数是这样写的:5、15、25、35、45.虽然这样写不能算错,但是这些学生可能对5的倍数与奇数的概念有些混淆。

在0、1、5、8,四张卡片中选出两张数字卡片,按要求组成两位数。

1、组成的数是偶数的有( )

2、组成的数是5的倍数的有( )

3、组成的数既是2的倍数、又是5的倍数的有( )。

这道题部分同学答案不全,想想还是正常的,其实这道题对于中等以下的学生来说确实有难度的。

倍数的特征教学反思4

本节课探究3的倍数的特征之前,我还是先让学生写出50以内3的倍数,然后让学生观察这些数有何特征,大部分同学找不着规律,个别同学可能是受上节课的影响,说出了:个位上是0、1、2、3、4、5、6、7、8、9的数就是3的倍数,但马上就被其他同学推翻了。

然后我就出示计数器,依次拨出3的倍数,让学生观察一共用了几颗珠子,让学生体会到有几颗珠子就是各个数位上数的和,发现珠子的颗数正好是3的倍数,也就是各个数位上数的和是3的倍数,那么这个数就是3的倍数。说实话,学生对于这一规律,不是很容易接受,在后来的练习中,才慢慢体会到。

“想想做做”的五道题设计得比较好,体现了分层,特别是最后一道,学生通过交流讨论后,得出了先选数后组数的思路,练习的效果比较好。

倍数的特征教学反思5

[教学实例]

师:我们今天要来研究2和5的倍数的特征。可是自然数那么多,我们能一个一个研究吗?

生:不能。那样的话永远也研究不了,自然数太多了,是无限的。

师:那怎么办呢?

(同桌讨论)

生:我们可以先研究小范围里面的数。再推广。

师:他的想法真棒!那我们就先确定一个比较小的范围1-100,看看这100个数里2和5的倍数有哪些特征。

师:同学们通过自己的努力,发现了1-100中所有5的倍数个位上的数字都是5或0。那么在所有的自然数中,是不是5的倍数都有这个特征呢?

生:(凌乱地回答)是!

师:肯定吗?这只是我们的——猜测。要证明这个猜测对不对,我们还要进一步验证。那如何验证呢?有那么多自然数啊?

(同桌讨论)

生:可以找一个数看一看。

师:找怎样的数呢?怎么看一看呢?谁能说得更明白呢?

生:就是找一个末尾是0或者5的数,然后除以5看看,能不能除得尽。

师:哦,如果找不到这样的数,那说明——在大范围里面也适合。

如果找得到这样的数,那就是有了反例,说明——在大范围里面不适合。

(学生在本子上举例)

……

师:我们举了大量的例子,没有找到反例。那现在我们可以得出怎样的结论了呢?

生:所有5的倍数,个位上的数字都是5或0。

师:谁能完整地说一说呢?在怎样的范围内呢?

生:在自然数中,个位上的数字是5或0,那这个数一定是5的倍数。

师:当然,我们研究的是不是0的自然数。

……(练习)

师:我们已经找到了5的倍数的特征,并能灵活运用了。那我们来回想一下,我们是怎样来研究5的倍数的特征的呢?

(同桌讨论,教师巡视并启发)

生1:我们先确定了一个范围。

师:为什么呢?

生1:因为不确定范围的话,数太多了,不可能研究得完。

生2:我们找到了这个范围内5的倍数特征后,就把范围扩大到所有不是0的自然数, ……此处隐藏4107个字……位的特殊数就行了。因此只看个位不能确定是不是3的倍数。

由于孩子们有了提前的预习,孩子们心目中已经有了结论。因此在这个时候孩子们思考的深度不够,没有理解教材的意图。教师把教材的意图有意识地进行了渗透,让学生驻足片刻,把握课堂的结构。

第三个环节,孩子们发现斜着看每个数的各位逐渐加一,十位逐渐减一,因此个位上的数字和十位上的数字之和不变,而且都是3的倍数。让孩子试着总结结论:两位数个位上和十位上的数字之和是3的倍数,那么这个数也是3的倍数。

第四个环节,其实并不是把3的倍数特征总结出来了就完成任务了。这个结论只是通过观察百数表得出的关于两位数的结论,两位数满足这个特征,是不是所有的数都适用呢?于是让孩子试着写一个三位数、四位数而且是3的倍数,然后用这个结论进行验证,看是否符合。孩子们先试着写几个3的倍数,老师罗列到黑板上,然后分别用用各个数位之和相加的方法和除以3是否有余数的方法进行验证。验证的结果是肯定的,因此得出的结论适合所有的数。

到这里孩子们对于3的倍数特征已经理解的很透彻了,做起练习来也显得得心应手。孩子体验了结论得出的过程,每一个环节的设计都有他的`意图,在每个环节孩子都有思考,有思维的碰撞,这才是教材的意图,才是真正的数学课。

倍数的特征教学反思11

《3的倍数的特征》的教学是在第一次教学之后,学校组织县级教学能手选拨赛时候第二次上,可以说是“一课两上”。我在第二次备课时完全从另一个角度来处理教材,收获颇丰。下面我就本节课前后两次上课反思如下:

第一次上课我是让学生圈出100以内3的倍数,去观察3的倍数的特征,由此总结出3的倍数的特征,然后实际应用,巩固练习。效果一般。而第二次上课时我是这样做的:使学生在原有认知的基础上产生认知冲突,在学习2、5倍数特征的基础上,让学生猜测是不是3的倍数的特征也要去看数的个位呢,进而产生新的探索欲望,让后在百数表中圈出3的倍数的特征,接着借助学生熟悉的计数器进行两个实验,实验一:验证3的倍数的特诊,实验二:验证不是3的倍数的的数的特征。最后实践应用,课堂检测。

整个教学过程突出了对学生“提出问题—探索问题—解决问题”的能力培养,学生能在猜想、操作、验证、交流、反思、归纳的数学活动中,获得较为丰富的数学经验,也有助于创造性的培养。这就要求我们教师首先要具有创造精神,注重设计宽松和谐民主的教学氛围,尊重学生,抓住一切可以利用的机会,激发学生的创新欲望,学生的创造意识才能得以培养,个性才能充分发展。

反思这节课的不足我觉得在每个环节的过渡上要做的更加自然、一气呵成会更好。由于本节课按照赛教要求只有30分钟,时间的把握做的还不够恰到好处。总之,教无定法,学海无涯,需要我不断的学习和实践,不断提高自身素质和专业水平,大力提高教学质量。

倍数的特征教学反思12

3的倍数的特征比较隐蔽,学生一般想不到从“各位上数的和”去研究。上课开始先让学生回顾旧知:2的倍数和5的倍数有什么特征?学生们发现都只要看一个数个位上的数就行了,于是很顺利地设下了陷阱:“同学们,那猜猜看3的倍数有什么特征呢?猜测是一种常用的数学思考方法,让学生猜测3的倍数有什么特征,能较好地调动学生的学习积极性。由于受2的倍数和5的倍数的特征的影响,有学生很自然猜测到“个位上是0,3,6,9的数一定是3的倍数”,还有学生猜测“个位上的数字加起来是3,6,9一定是3的倍数”,能想到这点应该说是了不起的。本课到这里都很顺利,因为完全在我的预设之中。

下面进入验证环节,先让学生判断自己的学号是不是3的倍数,再在这些学号中挑出个位上是0,3,6,9的数,通过交流,学生发现这些数不一定是3的倍数。学生初步发现了3的倍数的特征与2和5的倍数不同,不表现在数的个位上,那3的倍数究竟与什么有关系呢?于是进入到动手操作环节。在此基础上,抽象成各位上数的和,是理解3的倍数特征的关键。

“试一试”是数学的第三步,如果一个数不是3的倍数,那么这个数各位数的和不是3的倍数,利用反例进一步证实3的倍数的特征,体现了数学的严谨性和数学结论的确定性。随后设计了一系列习题,使学生得到巩固提高。

倍数的特征教学反思13

今天我教学了3的倍数的特征,我首先复习2、5的倍数的特征,然后我出示了几个不同的四位数,问生:谁能很快判断出哪些是3的倍数?想知道有什么窍门吗?这们引入课题很顺当,学生也很有兴趣。下面,我先让学生写出50以内3的倍数,再观察:3的倍数有什么特点?学生一时很难发现,仍从个位上的数去观察,但马上被其他同学否定,当时我心里有点担心怎么看不来呢?,我启发学生再看看个位和十位上的数,通过交流后,在部分学生马上发现把每个数的数字加起来的和除以3都是正好除的,我让学生用这个发现对书上第76页的表格100以内的数进行验证一下,学生验证后我又让学生从100以外的数来验证。从而得出了3的倍数的特征。再通过用1、2、6可以写成哪些三位数?这些三位数是3的倍数吗?由此有什么发现?让学生进一步明白3的倍数跟数字的位置没有关系,只跟各位上数的和有关系。这样学生在完成想想做做第5题时学生思考时就不会漏写了。最后,通过后面的练习,我觉得在教学某些知识时,最好老师不要轻易下结论,只有让他们自己在反复实践中自己得出结论,才能牢固地掌握知识。

倍数的特征教学反思14

1.以学生原有认知为基础,激发学生的探究欲望。教师利用学生刚学完“2、5的倍数的特征”产生的负迁移,直接抛出问题,激活了学生的原有认知,学生自然而然地会将“2、5的倍数的特征”迁移到解决“3的倍数特征”的问题,产生认知冲突,萌发疑问,激发强烈的探究欲望。本案例中,学生很快进入问题情境,猜测、否定、反思、观察、讨论,大部分学生渐渐进入了探究者的角色。

2.以问题为中心组织学生展开探究活动。在上面案例中,教师注意突出学生的主体地位,教师依据学生年龄特征和认知水平设计具有探索性的问题,引导学生紧紧围绕“3的倍数有什么特征”这个问题来开展学习活动,指导学生围绕问题展开探究活动,并不断组织师生之间、生生之间的交流和讨论,逐步发现、归纳规律、得出结论,培养了学生的探索意识和分析、概括、验证、判断等能力。

倍数的特征教学反思15

探究2的倍数的特征时,我没有采用书本上画圈的方法,而是让学生依次写出100以内2的倍数,并且要求学生思考:怎样写才能看上去更有规律。结果,大部分学生都听节约的,密密麻麻地写了几行,只有3位同学每行写10个,而且上下依次对齐。接着让学生观察这些数的特征,一些同学说出了无关紧要的,我又提示学生观察个位上的数,发现都是0、2、4、6、8,于是就得出2的倍数的特征;对于5的倍数的特征,就简单了许多,在刚才这些2的倍数中留下5的倍数,然后在补充各位是5的数,从而学生利用刚学的知识进行迁移,得出规律。

整堂的教学还是比较顺利的,但是“想想做做”没有来得及在课上全部完成,课后想了以下,写100以内2和5的倍数应该让学生在预习的时候就完成,这样可以节省新授的时间,就能即使得到巩固练习了。

《倍数的特征教学反思.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式